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Introduction

• Parallel block-Jacobi SN
– Spatial domain decomposition
– Finding efficient parallel sweep schedules for unstructured grids is 

difficult.
– Parallel block-Jacobi algorithm [Yavuz and Larsen, 1989 and 1992]
– Sub-domain interface angular fluxes are iterative unknowns.
– Convergence degrades with increasing processors (Np iterations needed 

in voids).

• Krylov methods
– Can a Krylov iterative method improve efficiency?
– Can Transport Synthetic Acceleration (TSA) be used as an effective 

preconditioner?
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Problem Formulation

• Time-independent SN equations
– Steady-state, isotropic scattering
– Quadrature
– Linear discontinuous finite element spatial discretization on cells 
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Problem Formulation

• Operator Notation
– Define the vector  
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Problem Formulation

• Parallel block-Jacobi iteration
– Spatially decomposed problems
– Inverting L on every sub-domain p independently
– Incoming boundary angular fluxes are specified from previous iteration or 

initial guess.

– Lp interior angular fluxes
– Lp,p’ couples sub-domain p to adjacent sub-domain p’.
– Scalar fluxes and boundary angular fluxes are iterative unknowns.
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Problem Formulation – Parallel Implementation

, ,
T

p p p p pW′ ′Ψ = Ψ

,p p

TW
′

,p pW ′

• Only outgoing angular fluxes on sub-domain boundaries are 
transferred.

• Define                      for sub-domain p´ adjacent to p 
• extracts the outgoing angular fluxes on the boundary from 

• maps back onto the full angular flux vector.

• Write the iteration in terms of an “augmented vector”
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Problem Formulation

• Source iteration 
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• Krylov iterative method
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Transport Synthetic Acceleration

• Source iteration is Richardson iteration.

1 1 1l lDL MS DL Q+ − −Φ = Φ +

• Preconditioning the Richardson iteration to improve 
convergence.  This equivalent to synthetic acceleration.

1 1 1( ) ( )l lI PS DL MS I PS DL Q+ − −Φ = + Φ + +

( ) 1,P URV R L MSD −= ≈ −

• and     are appropriate projection and interpolation 
operators.
U V
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Transport Synthetic Acceleration

• For Diffusion Synthetic Acceleration (DSA),    is calculated by 
solving a diffusion equation.

• For Transport Synthetic Acceleration (TSA),    is simply a low-
order transport equation.

R

R

• In traditional TSA:                     and 
–
– L and S are modified in the low-order equations to satisfy same 

conservation properties as the high-order problem.
– Typically, low-order equations use lower order quadratures and less 

scattering.
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Transport Synthetic Acceleration

• Modified TSA:
– remains the same and S is reduced in the low-order equations. 
– Always convergent
– Simpler implementation within the time and energy dependent 

calculations
– Can also use lower order quadratures

s sσ βσ′ = t tσ σ′ =

tσ
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Eigenvalue Spectra for Source Iteration
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Eigenvalue Spectra for Modified TSA



U N C L A S S I F I E D

U N C L A S S I F I E D

Eigenvalue Spectra for a  Fixed Physical Problem 
(H constant) as a Function of Number of Processors




U N C L A S S I F I E D

U N C L A S S I F I E D

Eigenvalue Spectra for a Fixed Number of Processors 
as a Function of Thickness
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Symmetric Part of A
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Linear Algebra Observations

• A is non-normal

• For                           
– d = degree of minimal polynomial, makespan of the subdomain graph 

=        for 1D 

=            for 2D

=             for 3D

• For GMRES(m), when          , it converges, otherwise, stagnation is 
possible since A is indefinite.
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pN

2 pN

33 pN

m d≥



U N C L A S S I F I E D

U N C L A S S I F I E D

Parallel Performance and Scaling

• Problem Characteristics
– S8 quadrature
– Fixed problem width H = 2 cm (equal-width mesh spacing)
– Constant isotropic distributed source q = 1
– Constant material properties 
– Vacuum boundary conditions
– Relative convergence criteria: 10-5 (high-order) and 10-7 (low-order)
– Compare GMRES(15), source iteration, traditional TSA (β=1.0 and 

β=0.9), and modified TSA (β=0.0, β=0.5 and β=0.95)

-11/16 cm , 0.999t cσ = =
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Parallel Performance and Scaling

Weak Scaling

• Fixed work per processor: n = 65536 x Np
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Parallel Performance and Scaling

Weak Scaling

• Fixed work per processor: n = 65536 x Np
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Parallel Performance and Scaling

Strong Scaling
• Fixed problem size: n = 2097152
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Parallel Performance and Scaling

Strong Scaling

• Fixed problem size: n = 2097152
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Summary and Conclusions

• GMRES stagnates for optically thin problems when the restart value 
is less than the number of processors.

• Modified TSA is an effective preconditioner for GMRES when the 
problem is optically thin.

• Need to explore 2D problems
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